Showing posts with label Iraq. Show all posts
Showing posts with label Iraq. Show all posts

Friday, 15 April 2022

The Three Lemons

 
A Pinzgauer Vector the highest priority of General Sir Richard Dannatt Commander in Chief Land Command on Salisbury Plain during the Vehicle Study Day on the 13th of September 2006
 
 
For centuries historians have struggled to explain the United Kingdom's frequent military defeats,but it was not until the advent of internet forums that the military illiteracy behind the deaths of hundreds of thousands of British soldiers became well documented,however,senior officers have long recorded their ignorance for posterity through the medium of defence procurement and herein we shall discuss several current projects.
 
An Ajax armoured fighting vehicle during cold weather system trials at Tame Ranges in Sweden between February and March 2019
 
 
An equivalent to and contemporary of the British Warrior Infantry Fighting Vehicle,A.S.CO.D. (Austrian Spanish COoperative Development) was developed by Austria and Spain,but despite needing a much larger number of vehicles,the British Army chose the improved A.S.CO.D. 2,rather than an all new design or a Warrior variant,as the basis of it's transformational Future Rapid Effects System which later became Ajax,an armoured reconnaissance vehicle which has neither the protection to withstand hits from weapons such as the 9M133M Kornet-M missile and 2A46 tank gun nor the fire power to suppress them,and which therefore must conduct reconnaissance by stealth,a task which requires neither medium armour nor a medium cannon,however,as Ajax currently does not work it may never enter service,which would be most fortunate.
 
A 99 Squadron Globemaster unloads new British Army Apache helicopters from Kansas City in the United States at Royal Air Force Brize Norton on the 24th of November 2020
 
 
Designed almost half a century ago,the Apache attack helicopter,as one of the few aircraft capable of delivering large numbers of precision weapons at night,had it's "happy time" attacking Iraqi forces during the liberation of Kuwait in Nineteen Ninety-one,a dozen years after that,during the invasion of Iraq,a force similar in size to the British Army's entire front line attack helicopter fleet was shot to pieces,in half an hour,by the poorly trained and equipped Medina Division over Karbala and in the Afghan war and Iraq wars combined more Apaches were lost than any other manned aircraft type,nevertheless,British Army officers decided that in an era of precision guided weapons a helicopter,with a large signature,which flies at slow speed and low altitude in close proximity to,and direct line of sight of,the enemy was the future of air warfare,before ordering another fifty,which may still be in service for the aircraft's eightieth birthday.
 
A Boxer Combat Reconnaissance Vehicle and an Abrams Main Battle Tank at Mount Bundey in the Northern Territory of Australia on the 15th of May 2017
 
 
The Boxer armoured truck,which shall already be a dozen years old by the time it enters British service,uniquely combines a modular hull which increases it's size,weight and cost for negligible benefit with a profile larger than a Main Battle Tank,ground pressure four times higher than an equivalent tracked vehicle,mechanicals which are exposed to enemy fire,a machine gun armed remote weapon station and protection against cannon fire both of which are inadequate in the front line and unnecessary anywhere else,and an ability to drive across Europe which,as the war in Ukraine has demonstrated,is utterly irrelevant.
 

Tuesday, 7 December 2021

Monday, 24 January 2011

Where Fuel Comes From


It is not difficult to get the impression that some people think that aircraft fuel appears at an air base with the wave of a magic wand.

In most parts of the World the reality is that air bases,in one way or another,rely on ships to deliver fuel.

If the navy can't protect those ships,the air force can't fly it's planes.

Without aircraft carriers,the navy can't protect those ships.


The difficulty of keeping air bases supplied with fuel was emphasised by tanker Ohio breaking through the siege of Malta at the end of Operation Pedestal.

The importance of sea based logistics to air power is also emphasised in lots of very long and dull documents.

However,someone has summed it up in a far more succinct manner with these comments on aerial refuelling.

The Author,Mark Hasara,introduced himself with the following line:


"Folks,

As the Chief of the Air Refueling Control Team for both air campaigns in Afghanistan (2002) and Iraq (2002-2003)"


Lieutenant Colonel Mark Hasara is obviously a man who knows a great deal about putting fuel in to aircraft.



This is a short extract from what he had to say about the logistics of operations in Iraq in 2003:


"Fuel resupply and storage has not been talked about much.

Every one talks about how big an airframe is and so forth.

It is important but if I cannot get gas into the base then it cannot support long endurance tanker ops tempos.

WE RAN A MIDDLE EAST COUNTRY OUT OF GAS!

We had a 4 kilometer long line of 8500 gallon fuel trucks waiting to get on one base to fill one tank farm at one base back up.

We used it all in 3 days and had to do it again.

We had Super Tankers (ST’s) in the Persian Gulf to keep one place full and they pumped it straight from the ST's to the base.

20 KC-10s were flying 38 sorties with 320,000 pound fuel loads.

That is 1.87 million gallons just to fly the KC-10 lines of an ATO at one base."


Some sources say there may have been as many as 14 tanker bases used during that operation.

The immense scale of logistical support can be imagined.


We briefly discussed the costs of convoys of fuel trucks in another post.


The cost of air based logistics was also covered in an earlier post.


Even when aircraft are flying from bases on top of the World's largest oil fields,they still depend on ships to bring them fuel.


It doesn't matter how quickly an aircraft can deploy,without fuel it can't do anything useful when it gets there.




To deliver the fuel will probably require tanker ships.


Those ships will need a navy to protect them.

Wednesday, 19 January 2011

Aerial Refuelling Demand:By The Numbers


We pointed out that demand for tanker aircraft was declining significantly while F.S.T.A. was committing the British taxpayer to fund massive overcapacity at vast expense until 2035.

We suggested that Britain needed only 6 or 7 A330 tanker transport aircraft.

We also suggested that these should have been bought outright.

We did not go into detail about that number.

We shall do so here.



The cost to the taxpayer of the air refuelling fleet is defined by the capacity which must be maintained in peacetime.

The air refuelling capacity must satisfy peak air refuelling demand.

Peak air refuelling demand occurs during major war fighting operations.

The last time Britain was engaged in a major war fighting operation was during the 2003 invasion of Iraq,known as Operation Telic or Iraqi Freedom.

Developments in weapons and sensors,the Royal Navy's new aircraft carriers,reductions in the size of British military aircraft fleet and longer ranged aircraft entering service all suggest that future peak air refuelling demand will be significantly less than it was in 2003.


Let us look at what was needed in 2003.



The United States Air Force (U.S.A.F.) publication "Operation IRAQI FREEDOM – By The Numbers" gives statistics for the 31 days of the air war during the Iraq invasion.

It says that the Royal Air Force deployed 12 air refuelling tankers for Operation Telic/Iraqi Freedom,these flew 359 sorties and offloaded  18,884,000 pounds of fuel.

The latter figure is listed under the phrase "coalition" but as no other coalition country is listed as providing aerial refuelling aircraft this must presumably have been delivered by the Royal Air Force.


In Chapter 6 of a "Short History of the Royal Air Force","RETURN TO EXPEDITIONARY WARFARE",the following figures were given for the British aerial refuelling effort during the Iraq invasion:


"The AAR (Air to Air Refuelling) capability contributed by the RAF was highly valued,particularly by the
Americans.

VC10s and Tristars flew 355 sorties dispensing nearly 19 million lbs of fuel.
Over 40% of this was given to US Navy and Marine Corps aircraft.*"

*Aircraft of the United States Air Force are unable to receive fuel from the "hose and drogue" equipped British tanker aircraft.


These numbers are almost identical to those given by the United States Air Force.

The Royal Air Force contribution amounted to about 4.5% of the coalition aerial refuelling effort which offloaded a total of 417,137,233 pounds of fuel.

A summary of the relevant figures is as follows:


Number of refuelling aircraft.


                    United States Air Force                          182                   
                        United States Marine Corps                     22                       
                         United States Navy                                   52                        
            Royal Air Force                                        12 (4.5%)

Total                                                         268


Number of Refuelling Sorties Flown.

United States Air Force                        6,193 
United States Marine Corps                    454
 United States Navy                              2,058 
         Royal Air Force                                       359 (4%)

Total                                                     9,064

Pounds of fuel offloaded.
  
United States Air Force        376,391,000 
United States Marine Corps   12,545,786
United States Navy                   9,316,447
            Coalition  (Royal Air Force)     18,884,000 (4.5%)

Total                                         417,137,233


Using the more precise American figures we get a total of 8,584 tonnes of fuel offloaded by British tanker aircraft in 359 sorties during 31 days of combat operations.

An average of 277 tonnes offloaded per day by an average of 11.6 daily tanker sorties.

This is an average of 0.97 sorties per tanker aircraft per day*.

An average of 23.9 tonnes of fuel was offloaded per sortie.

An average of 23.1 tonnes of fuel was offloaded per aircraft per day.

Only 60% of the above was offloaded to British military aircraft.

*This figure is higher than that achieved by Royal Air Force combat aircraft during operation Telic.

The Royal Air Force often generates far lower sortie rates than other air arms and air forces.

However,Royal Air Force tanker aircraft often generate far higher sortie rates than other elements of the Royal Air Force.




Unfortunately none of the above figures gives any indication of where the fuel was offloaded.


For the receiving aircraft,the important metric in aerial refuelling is the weight of fuel received and the distance from the operating area at which it is received.


Fuel received close to the operating area is of more benefit than fuel received far from the combat area.


It is important to note that the range from the tanker aircraft's base is of no relevance at all to this.


This gives us a problem when comparing the performance of aerial refuelling aircraft.


The most obvious and easily compared metric is the fuel the tanker aircraft can offload at a given range from it's base.


But as it is the distance from the combat aircraft's operating area at which the fuel is transferred which is important,this figure is of no benefit.


A smaller tanker aircraft which can generate a large number of daily sorties from an aircraft carrier or shorter runway on a base closer to where the fuel offload is needed may be of more benefit than a large tanker aircraft which can fly fewer sorties from a more distant base with a long runway.


It is essential to consider where the tanker aircraft can operate from and where the fuel offload is needed.


This dictates how far the tanker aircraft must fly on each sortie and thus how many sorties it can generate in a day,how much fuel it will burn on each sortie and how much it will have left to transfer to the receiving aircraft.




For example,an A400M tanker may carry only half as much fuel as an A330 tanker (58 tonnes versus 111 tonnes) but it might be based much closer to it's tanker track as it does not require a 10,000 foot runway.


This reduces fuel burn in transit,and fuel burn on station for the smaller A400M is also less  leaving more fuel for offloading.

With each sortie taking less time,more sorties can be flown in a day,off setting the capacity deficit of the smaller aircraft.

The lower overall fuel consumption also reduces the logistical burden on the ground.


Thus a small carrier based tanker aircraft or a rough field capable tanker convertible A400M might be more cost effective options than a large long runway A330 tanker aircraft - depending on the basing options available.




However,as the A330 tankers are already in production,we shall consider only them here.


During the Iraq invasion,British tanker aircraft (probably 4 Tristars and 8 VC10s) operated from Al Udeid in Qatar,as did most British military aircraft.


Al Udeid is about 400 miles from the border of Iraq.


As orbiting tanker aircraft are highly vulnerable we may assume that the tanker orbits (an image of a tanker orbit can be seen here) were some distance South of the Iraqi border during initial combat operations at least.


They later moved further North as the threat declined later on.


This would place the tanker orbits perhaps about 350 nautical miles North of Al Udeid initially,distances increasing later in the conflict.


An A330 tanker can deliver 60 tonnes of fuel at 500 nautical miles from base with 5 hours on station.


At shorter ranges it can offload far more fuel than that.




The average of 277 tonnes offloaded per day by the Royal Air Force Tristars and VC10s could probably be delivered by about 4 daily A330 tanker sorties.


Assuming the A330 generates the same sortie rates as the Tristars and VC10s managed,we would probably require only 4 A330 tanker aircraft to generate the offload capacity delivered by 12 tanker aircraft in 2003.


Assuming 80% availability of the A330 fleet,we would require a fleet of just 5 A330s to satisfy peak tanker demand during major war fighting operations.


If we were to exclude the 40% of the British tanker capacity which was not offloaded to British aircraft in 2003,the requirement would be for about 2.5 A330 tanker sorties per day.


This could be provided by a total fleet of just 3 A330 tankers.


As we said earlier,future tanker demand is likely to be far lower than it was in 2003,with longer ranged aircraft like F35C replacing the short ranged Harrier and new aircraft carriers usually allowing them to be based closer to the combat area.


Buying tanker conversion kits for A400Ms and F35Cs would reduce demand for dedicated tanker aircraft still further.


Even allowing for aircraft undergoing maintenance,and on transport tasks,there appears to be no need for more than half the 14 A330 tankers which will be provided under the F.S.T.A. contract.

Thursday, 5 November 2009

The Queen Elizabeth Class Aircraft Carriers


The aircraft carrier is the last true capital ship of any navy's surface fleet.


While most of a navy's ships are primarily of use in war at sea,the aircraft carrier is equally powerful in air wars and land wars.


Although the aircraft carrier is the most expensive ship in any surface fleet,it is also the vessel which is most useful most often,and hence most resource effective.


While other ships may have a limited ability to attack land targets,the aircraft carrier can also find targets on land and conduct a sustained land attack campaign.


While other ships may have a limited ability to engage aircraft,in an air battle the aircraft carrier is limited only by the airgroup it can carry.



While other ships may have a limited ability to engage surface ships and submarines,the aircraft carrier can detect and engage those targets from hundreds of miles away.



In addition to it's more common air attack role,the aircraft carrier has been used extensively,especially by the Royal Navy,in the air assault role.



Indeed,the aircraft carrier in it's air assault or "Commando carrier" role is the only ship which can conduct an amphibious assault without exposing it's self to land based threats.



The aircraft carrier's large internal volume allows it to carry extensive medical facilities,it is the ideal "primary casualty reception ship",particularly during air assault operations.



The flexible nature of a large aircraft carrier allows it to economically replace a larger number of smaller,single role ships.



Most importantly,the large aircraft carrier is the most cost effective means of deploying expeditionary air power.



The cost savings inherent in using carrier aviation can exceed the cost of buying and operating an aircraft carrier by a factor of ten.



Whilst the aircraft carrier is essential to naval operations,it is these cost savings which make carrier aviation essential to air and land warfare.



A small number of large multirole air attack/air assault ships provides a highly capable and flexible core to a surface fleet.



For the British Royal Navy,four purpose designed large multirole aircraft carriers could replace Her Majesty's Ships:Invincible,Illustrious,Ark Royal,Ocean,Albion,Bulwark and the Royal Fleet Auxiliary Argus.



Such a fleet would result in a robust and cost effective ability to conduct the whole spectrum of combat operations.



However,instead of designing a large multirole aircraft carrier the Royal Navy is currently procuring the much smaller Queen Elizabeth class.



While the Queen Elizabeth class has a secondary role as a "Commando carrier" it does not have sufficient capacity to replace the Royal Navy's three current assault ships.



Equally,the small air wing of the Queen Elizabeth class limits the cost savings which it can achieve in the application of expeditionary air power.



The current plan to purchase the vertical landing F35B for the Royal Navy's carrier wing will result in an air wing which is very limited in capability.



The F35B is less capable than the cheaper conventional landing F35C.



Fixed wing Airborne Early Warning (A.E.W.) and other support aircraft cannot operate from the Queen Elizabeth class aircraft carriers unless the ships are configured for catapult operation.



The rotary wing alternatives are much less capable and are not able to support air combat operations far from the carrier.



This lack of fixed wing capability creates a dependence on expensive land based support aircraft and bases.



The current plan to build the Queen Elizabeth class as vertical landing carriers will result in higher overall costs,greater risk and lower return on investment.



The Queen Elizabeth class aircraft carriers also suffer from a number of deficiencies in their design.



Many of the negative features of the Queen Elizabeth class appear to be taken directly from the troubled French aircraft carrier Charles de Gaulle.



Both ships are too slow,too small and have inefficient deck layouts.



The flight deck layout of the two ships is identical apart from the second island on the conventionally powered Queen Elizabeth class.



Problems inherent in the deck layout of the Queen Elizabeth class aircraft carrier when configured for catapults and arrestor wires are as follows:



1.The foremost island precludes mounting the forward catapult along the starboard side deck edge.



It also occupies high value/high utility deck space with access to catapults,aircraft lifts and the landing area.




The utility of flight deck areas adjacent to the foremost island is degraded by their small size,awkward shape and proximity to the superstructure.



The turbulent wake from the forward island affects both deck operations and flying operations as aircraft must pass behind the island as they approach to land on the carrier.



Corrosive exhaust gasses from the forward uptake also have negative effects on both deck and flying operations.



2.The starboard catapult cannot be used or prepared for use without interfering with the operation of both the landing area and the port catapult.



This problem can also been seen in this picture of HMS Hermes.



3.The Aft island occupies high value/high utility deck space with access to catapults,aircraft elevators and the landing area.



The utility of flight deck areas adjacent to the aft island is degraded by their small size,awkward shape and proximity to the superstructure.




The turbulent wake from the aft island affects both deck operations and flying operations as aircraft must pass behind the island as they approach to land on the carrier.




Corrosive exhaust gasses from the aft uptake also have negative effects on both deck and flying operations.



4.The port catapult cannot be used without interfering with the operation of both the landing area and the starboard catapult.



5.The proximity of the aft aircraft lift to the arrestor wires and landing area precludes aircraft movements from the starboard aftermost parking area,"Fly 3", when the aft lift is being used during landing operations.



6.The port aftermost parking area,"Fly 4",has very low utility/low value as during landing operations it is isolated from the aircraft lifts and other aircraft arming,fuelling and handling areas whilst the catapult it services cannot be used or prepared for use.



Note the way the landing area cuts the flightdeck in two on the French aircraft carrier Charles de Gaulle.

Solutions to these problems shown on the "Improved Queen Elizabeth class" are as follows:


A.Mounting the starboard catapult along the deck edge allows the catapult to be used or prepared for use without interfering with the operation of either the landing area or the port catapult.



This also minimises the deck area swept by aircraft launching from the catapult and hence increases the parking space available in the forward,"Fly 1",parking area during single catapult operations whilst permitting unrestricted access to the main aircraft arming,fuelling and handling areas and aircraft lifts.



B.Mounting the port catapult forward,parallel to the starboard catapult and the landing area and with adequate separation from them,allows it to be used or prepared for use without interfering with the operation of either the landing area or the starboard catapult.




This large and regularly shaped,"Fly 1",parking area supports the starboard catapult during single catapult operations whilst also having unrestricted access to the main aircraft arming,fuelling and handling areas and aircraft lifts.




With both catapults and the landing area in parallel,all can be pointing into the wind at the same time.



Mounting both catapults alongside eachother on the fore deck allows this deck to be inclined up towards the bows.



This increases the safety and performance of the catapults whilst also permitting aircraft launches when the ship is pitching heavily.



In addition,the resulting higher bows will help to keep the deck dry in heavy weather.




The angle of incline of the foredeck must be sufficiently modest to permit this area to be used for aircraft parking.




C.The main aircraft arming,fuelling and handling area,"Fly 2",is large and unobstructed with unrestricted access to both catapults,both aircraft lifts and the landing area.

The future American aircraft carrier CVN 78 uses this layout.




D.The small and awkwardly shaped forward part of the port aft parking area,"Fly 4",can be used as a parking area for flightdeck tractors,cranes,fire tenders and other equipment which does not need to regularly cross the landing area.




Using low utility/low value deck space for low value purposes frees up high utility/high value deck space for high value uses.




E.Locating the island to port,aft of the landing area in "Fly 4",utilises low utility/low value deck space and hence frees up high utility/high value deckspace elsewhere.




A small narrow island takes up less deckspace and creates less air turbulence in it's wake.




Aircraft approaching to land from starboard do not have to fly through the turbulent wake and corrosive exhaust of an island on the port side whilst locating the island well aft also reduces the effects of turbulence and exhaust gasses on deck operations.




F.Moving the aft aircraft elevator further aft reduces the size of the isolated,limited utility "Fly 3" parking area whilst increasing the size of the high utility/high value "Fly 2" aircraft arming,fuelling and handling area.




G.The now smaller and still isolated,low utility/low value "Fly 4" area aft of the island allows helicopter operations to take place without interfering with fixed wing flying operations.



This area can also be used to park aircraft and equipment which would not routinely need to cross the landing area.


Carrying their heavy,armoured strength deck at hangar deck level,American aircraft carriers traditionally had narrow hangar decks but wide lightly built flight decks supported by sponsons,modern American carriers continue this trend even with their strength deck now at flight deck level.


With their heavy,armoured strength deck at flightdeck level,British carriers had narrower flight decks but hulls which flared out above the waterline to give a wide hangar deck.


The French aircraft carrier Charles de Gaulle has an American style narrow,vertical hull with wide sponsons. 


With no armoured decks,the Queen Elizabeth class could have had the advantages of both designs but instead they have an American style narrow hangar deck just like Charles de Gaulle.


The new Italian aircraft carrier Cavour has a British style flared hull,giving greater hull volume at the hanger deck level.

 

The main engines on the Queen Elizabeth class aircraft carriers are,unusually,at hangar deck level.



This reduces the weight and internal volume required for ducting engine intake and exhaust gases,it also simplifies ship design.



The light weight of the gas turbines combined with the integrated full electric propulsion system permits the use of this unusual arrangement.


However,this location exposes the engines to increased risk of battle damage.



To mitigate this risk it is necessary to ensure a high degree of separation between the two engines.



On the Queen Elizabeth class the engines are located fore and aft of the forward aircraft elevator on the starboard side.

 This in turn results in the need for each engine to have it's own seperate uptake for exhaust gasses as the position of the aircraft elevator precludes ducting both engines to a single uptake.



Such an arrangement takes up a substantial area of high utility/high value deck space and reduces the utility of nearby open deck space whilst also afflicting flying and deck operations with the effects of air turbulence and exhaust gasses in the wake of the islands.




The designers of the Queen Elizabeth class claim to have made a virtue of this necessity by constructing two islands around these two uptakes.



However the advantage of having two islands is questionable at best.



Relocating the engines to the port side,allows an exhaust duct to be run below the outer edge of the flight deck,connecting multiple engines to a single uptake.



This arrangement takes up little usable volume.



Engines can intake air locally and laterally,it is only the exhaust gasses which need to go through the uptake duct.



Two of the biggest problems with the Queen Elizabeth class are the low speed and small size of these ships.



Ship speed is a critical factor in aircraft carrier operations as it allows the ship to generate "wind over deck",this being the sum of wind speed and ship speed.



As fixed wing aircraft must land and take off at a particular air speed,the relative speed between the aircraft and the ship is equal to airspeed minus speed of the "wind over deck".



Thus the higher the speed of the ship,the lower the relative speed between the ship and the aircraft on landing and takeoff.



Reducing this relative speed has two advantages.



Firstly it makes take offs and landings easier for the pilot as things happen more slowly.



Secondly it reduces the amount of energy which must be transferred from the aircraft on landing or given to the aircraft on takeoff.



As kinetic energy is proportional to the square of velocity,small reductions in relative speed result in large reductions in kinetic energy.



Reducing this energy transfer reduces demands on catapults,arrestor wires and airframes on a conventional aircraft carrier.



It is also very important in conducting flying operations by other means which do not involve catapults or arrestor wires.



Ship speed and flightdeck height are also critical safety factors in helicopter operations.



High ship speed also gives the aircraft carrier greater strategic mobility,allowing it to get to the operational area more quickly.



Tactically,speed is important with regards to the submarine threat.



Submerged conventional submarines have limited speed and endurance and can be outrun by most surface ships.



However,some nuclear powered boats are allegedly capable of very high speeds.



Some Russian submarines are credited with "quiet speeds" of 28 knots and maximum speeds of 35 knots.



An aircraft carrier which cannot match such speeds is vulnerable to being hunted by nuclear submarines.




Historically most aircraft carriers have made speeds in excess of 30 knots,with some making close to 35 knots.



As speed increases,so does the need for power to generate that speed and the need for fuel to generate power.



For a given size of ship,increased volume and weight dedicated to ship's fuel and power means less volume and weight for other things such as ammunition and aviation fuel.



Hence there are design incentives to restrain ship speed just as there are incentives to increase ship speed.



The question is at what speeds do these conflicts balance out?



Historically,most large aircraft carriers have been capable of speeds of 32-35 knots.



The Queen Elizabeth class are said to be capable of 25-28 knots.



These speeds are well below what is generally regarded as practical.



A longer hull is more hydrodynamic and requires less power to generate a given speed or generates a greater speed for a given power.



A longer ship also offers more deck space,internal volume and payload,all of which are of great benefit to aircraft carrier operations.



Increased flight deck length is of particular benefit to flying operations.



On a conventionally equipped ship,increasing flight deck length also increases the flightdeck width available for catapults ahead of the angled landing area.



Additional length is also of great benefit for ships which utilise rolling landings and/or rolling take offs.



A longer ship will pitch less in a given sea state.



As angle of pitch is a limiting factor on flying operations,so the longer ship will permit flying in worse weather conditions.



The modular nature of the Queen Elizabeth class makes it a simple matter to increase the ship's length by adding a hull plug at an early stage in the build.

A 30 metre hull plug would add enough space for a third gas turbine and the fuel it requires.

It would also increase hangar space sufficiently to accomodate 6 additional fighter aircraft while adding enough deck space for an additional 12 aircraft in the deck park.

With space for an airgroup of 58 aircraft the ship will be able to carry a full range of large support aircraft and a larger fighter wing.

The increase in hull length combined with the power of a third turbine will increase ship speed to around 30 knots.

It would be neccessary to make changes to the propulsion (screws,shafts and motors) to match the increased power output but again such changes are easily accommodated at this very early stage in the ship's build.

One of the main rasons for a nation to buy an aircraft carrier is it's cost effectiveness when compared to land based aviation.

Aircraft carriers are often located closer to areas of conflict than air bases.

This reduction in the distance between the aircraft's base and it's area of operation (and the great speed with which the sortie generating factory that is an aircraft carrier turns aircraft around between sorties) allows each aircraft to fly more sorties in a day.

If each aircraft flies more daily sorties then fewer aircraft are required.

Similarly,for more persistant sorties,shorter distances translate to longer time on station and hence fewer aircraft required to maintain round the clock coverage.

Carrier based aircraft also require less aerial refueling support.

In the major air wars which the United Kingdom has been involved in since 1945,carrier based aircraft have typically generated double the sortie rates of their land based counterparts.

For example,during the six week long air war over the Falkland Islands,carrier based fixed wing aircraft flew 1561 sorties while land based bombers completed just 5 tactical sorties.

Doubling the aircraft's sortie rate would halve the number of aircraft required to generate a given effect on the enemy.

Thus a carrier wing of 48 aircraft could do the same job as 96 land based aircraft.

However,this does not represent a saving of just 48 aircraft.

For every 4 aircraft with British Royal Air Force (R.A.F.) frontline squadrons there is typically 1 aircraft with an Operational Conversion Unit (O.C.U.) being used to train pilots on that aircraft type and a further 2 aircraft as attrition and maintenance reserves in what is known as the "depth fleet".

Fielding a wing of 48 frontline fighters then requires approximately 84 aircraft.

Thus if a carrier wing of 48 aircraft does the job of 96 land based aircraft we may reduce the size of our fighter aircraft fleet by 84 aircraft in total and still generate the same effect on target.

The operating costs of the Royal Navy's expected future carrier aircraft,the F35 Lightning II,are not known at present.

However,a Typhoon fighter of the R.A.F. costs £90,000 an hour to operate,including capital costs.

These aircraft are currently flying 30 hours a month or 360 hours a year.

That equates to a cost of £32,400,000 per aircraft per year in capital and operating costs.

This figure may not be representative of the cost of the Typhoon when the whole fleet is in service but it is the most recent published figure as of late 2009.

The Royal Air Force spends approximately £11,000,000 a year for every aircraft in it's fast jet fleet.

The annual cost of a Tornado bomber has been stated as £10,400,000.

As the costs of the Typhoon may not be representative of the type when it fully enters service,I will henceforth use the figure of £11,000,000 a year as the cost of a typical combat aircraft.

Based on these figures,if we could reduce the size of our combat aircraft fleet by 84 aircraft we would save £924,000,000 a year.

The annualised whole lifecycle cost of the Queen Elizabeth class aircraft carriers is likely to be a little over £100,000,000 a year.

Thus the aircraft carrier permits a net annual saving of £824,000,000.

Clearly the annual savings generated by the aircraft carrier are immense.

It is noteworthy that the size of the airgroup dictates the size of this financial saving.

An air wing of just 36 fighters would typically generate the same workrate as 72 land based fighters.

This would allow us to cut the size of our air fleet by 36 frontline aircraft and 63 aircraft in total,again based on current ratios of frontline aircraft to training aircraft and the depth fleet.

At £11,000,000 per combat aircraft per year that equates to a saving of £693,000,000 a year for 63 fewer aircraft.

Which is £231,000,000 less than we could save with a 48 strong carrier airwing.

In other words the larger our aircraft carriers and the bigger their air wings the more money we save.

Also,whether an aircraft carrier has 40 aircraft aboard or 80,it still requires the same number of escorts to defend it and the same number of replenishment vessels to supply it.

But the ship with 60 aircraft may generate twice as many sorties as the ship with 30 aircraft.

Thus the cost per sortie "overhead" of the aircraft carrier and it's escorts is usually lower for the larger aircraft carrier than for the smaller ship.

The size of an aircraft carrier's airgroup then is a major factor dictating the efficiency with which the ship can generate sorties.

The greatest financial benefits come from the aircraft carrier with the largest practical air wing.

There are clearly significant financial savings to be had from increasing the size of the Queen Elizabeth class carriers so they can carry more aircraft.

The costs of buying aircraft carriers,let alone the cost of increasing their size,is inconsequential when compared to the massive cost savings they generate.

In summary,although the current Queen Elizabeth class aircraft carrier design suffers from a small airgroup,inefficient deck layout and slow speed,all of these problems can be easily rectified at an early stage in the build process.

With a 30 metre hull plug,a third gas turbine,a single island located to port and a revised deck layout with catapults and arrestor wires these ships will be more cost effective and more combat effective.

The cost of such modifications is repaid many times over by the additional savings which they permit.